
A Toolkit for Assessments in Introductory Programming Courses
Eric Xing

eric.xing819@topper.wku.edu
Western Kentucky University
Bowling Green, KY, USA

Guangming Xing
guangming.xing@wku.edu

Western Kentucky University
Bowling Green, KY, USA

ABSTRACT
Traditional paper-based exams and LMS-provided online exams for
introductory programming courses are not aligned with learning
objectives that emphasize problem-solving and coding skills. In
this poster, we present a cloud-based assessment solution for intro-
ductory programming courses. First, we discuss the requirements
and challenges of conducting frequent assessments. We then out-
line the functions in our online exam toolkit that allow instructors
to administer versatile assessments. Instead of relying on a tradi-
tional lockdown browser, the plagiarism and cheating detection in
our toolkit allows instructors to administer exams in any modern
browser for face-to-face classes.

1 INTRODUCTION
It has been shown that frequent assessments help improve knowl-
edge retention and may improve understanding of course content
[1]. However, it is difficult to conduct frequent assessments for
large programming courses in dedicated computer labs due to lim-
ited resources. This has motivated bring-your-own-device exam[2],
but most exams are restricted to only multiple-choice or fill-in-
the-blank questions. Additionally, these exams require the use of a
lockdown browser to prevent cheating. Setting up these lockdown
browsers unnecessarily increases the complexity of assessments,
creating hassle for both the student and teacher. It is therefore im-
portant to develop methods to detect and deter student cheating
without introducing additional software. Additionally, container-
ized technologies have increased the popularity of web IDE, making
them common in computer science classrooms. These advance-
ments naturally call for their use in computer science assessments.
Lastly, educators spend a large amount of time grading assessments.
While LMSs provide a degree of automation, their lack of diversity
in question types limits the usefulness of current auto-grading.

To address the aforementioned limitations, we propose an on-
line assessment toolkit for introductory programming courses. We
summarize its contributions as follows:

• Our toolkit augments traditional question types by usingweb
IDEs to provide realistic coding questions in an assessment.

• Our toolkit eliminates the need for a lockdown browser by
incorporating deterrents and cheating detection.

• Our toolkit vastly reduces the time needed for instructors to
author and grade assessments by using AI technologies.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9433-8/23/03.
https://doi.org/10.1145/3545947.3576231

2 OVERVIEW
Ideally, assessments in programming courses should determine
student understanding of programming concepts as well as their
ability to write actual code. Assessing basic programming concepts
is usually achieved well through multiple choice, fill-in-the-blank,
and matching questions, which are available in most LMSs. Coding
questions, however, are generally not supported by LMSs. This is
because they require more than simple text boxes, as most students
need IDE features to write code. Recent efforts by Computer Sci-
ence education systems, like PrairieLearn [3], offer auto-grading of
coding problems, but they lack one or more features in our toolkit.

The main component of the student exam module is the exam
web interface. Instead of relying on a lockdown browser, we present
the exam content in full-screen mode, which forces the student to
stay on the exam. When a student switches to a different tab or app
for more than two seconds, a color change will be triggered in the
web interface, and the instructor will be notified of this deviation.

Additionally, all student interactionswith theweb IDE are recorded,
so any improper use of the web IDE for code tracing problems is
identified through cheating detection.

Lastly, the authoring modules and grading module provides mul-
tiple tools that increase the convenience and flexibility of frequent
assessments. The system supports auto-grading of all question
types, with the capability to handle partial credit. Additionally, it
supports manual grading of the coding questions, which allows
code editing and running test cases.

3 CONTRIBUTIONS AND FUTURE RESEARCH
We have piloted the system in two courses for weekly quizzes and
exams with more than 150 students. The setup for an exam takes
significantly less time when compared to a traditional LMS, such as
Blackboard, and auto-grading reduces the amount of time needed to
return assessment results. In our pilot, quizzes are completely auto-
graded, while exams are mostly auto-graded, with the exception of
giving partial credit on coding questions. In our experiments, this
system has cut the time needed for grading by over 60%.

Research to quantify the impacts on the instructors and the
students is being conducted. In the future, we hope to find more
collaborators by sharing our experience so that we can build a
repository of assessment questions that can be shared by educators.

REFERENCES
[1] B. J. Huelser K. B. McDermott M. A. McDaniel, P. K. Agarwal and H. L. I. Roediger.

2011. Test-Enhanced Learning in a Middle School Science Classroom: The Effects
of Quiz Frequency and Placement. Journal of Educational Psychology 103, 2
(November 2011), 399–414. https://doi.org/10.1145/161468.161469

[2] Norman Tiong Seng Lee Oka Kurniawan and Christopher M. Poskitt. 2020. Secur-
ing Bring-Your-Own-Device (BYOD) Programming Exams. In 51st ACM Technical
Symposium on Computer Science Education (SIGCSE ’20). ACM SigCSE, 880–886.

[3] prairielearn 2022. PrairieLearn. Retrieved Jan 2, 2023 from https://www.
prairielearn.org/

1285

https://orcid.org/0000-0002-8442-3777
https://orcid.org/0000-0002-1234-5247
https://doi.org/10.1145/3545947.3576231
https://doi.org/10.1145/161468.161469
https://www.prairielearn.org/
https://www.prairielearn.org/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545947.3576231&domain=pdf&date_stamp=2023-03-06

	Abstract
	1 Introduction
	2 Overview
	3 Contributions and Future Research
	References



