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ABSTRACT
A soundscape is defined by the acoustic environment a person
perceives at a location. In this work, we propose a framework for
mapping soundscapes across the Earth. Since soundscapes involve
sound distributions that span varying spatial scales, we represent
locations with multi-scale satellite imagery and learn a joint rep-
resentation among this imagery, audio, and text. To capture the
inherent uncertainty in the soundscape of a location, we design
the representation space to be probabilistic. We also fuse ubiqui-
tous metadata (including geolocation, time, and data source) to
enable learning of spatially and temporally dynamic representa-
tions of soundscapes. We demonstrate the utility of our framework
by creating large-scale soundscape maps integrating both audio
and text with temporal control. To facilitate future research on this
task, we also introduce a large-scale dataset, GeoSound, contain-
ing over 300𝑘 geotagged audio samples paired with both low- and
high-resolution satellite imagery. We demonstrate that our method
outperforms the existing state-of-the-art on both GeoSound and the
existing SoundingEarth dataset. Our dataset and code is available
at https://github.com/mvrl/PSM.

KEYWORDS
Soundscape Mapping; Audio Visual Learning; Probabilistic Repre-
sentation Learning

1 INTRODUCTION
Soundscape mapping involves understanding the relationship be-
tween locations on Earth and the distribution of sounds at those
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locations. The soundscape of an area strongly correlates with psy-
chological and physiological health [27]. Therefore, soundscape
maps are valuable tools for environmental noise management and
urban planning [19, 30, 32]. Additionally, technologies such as aug-
mented reality and navigation systems can use soundscapemapping
to provide immersive experiences.

Traditionally, soundscape mapping involves predicting a set
of acoustic indicators (e.g., sound pressure, loudness) to descrip-
tors (e.g., pleasant, eventful) [16, 18, 28]. This approach limits un-
derstanding of the acoustic scene and relies on crowd-sourced
data [6, 35], often available only for densely populated areas. As a
result, traditional methods generate sparse soundscape maps that
lack generalizability and are unsuitable for creating global maps.

To address the limitations of traditional soundscape mapping,
we adopt a formulation where, given a specific location, the task is
to train a machine learning model that directly predicts the sound
distribution likely to be encountered at that location. We represent
each location with a satellite image centered around it. This ap-
proach enables the generalization of soundscape mapping beyond
locations explicitly included in the training data.

We approach the soundscape mapping problem from the perspec-
tive of multimodal representation learning to design a shared em-
bedding space between audio and satellite imagery at the recorded
location of the audio. This learning strategy aims to bring posi-
tive audio-satellite image pairs closer while pushing negative pairs
farther apart in the embedding space. Ultimately, the multimodal
embedding space can be employed to generate soundscape maps
by computing similarity scores between the query and the satellite
image set covering the geographic region of interest.

Soundscape mapping is inherently uncertain, as multiple types
of sounds can come from one location, and a specific sound can
originate from multiple locations. Paired location and audio data
often contain pseudo-positives, sample pairs labeled as negatives
but semantically similar to positives. Methods that learn deter-
ministic representations of sound and satellite imagery ignore this
uncertainty. To address this, we propose a probabilistic multi-modal
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embedding space for audio, satellite imagery, and textual descrip-
tions [12]. To account for potential false negatives, we identify
pseudo-positive matches during training [12].

Satellite images of audio capture locations can be obtained at
different spatial resolutions, with ground area coverage increasing
as zoom levels increase. To create large-scale soundscape maps,
we aim to learn an embedding space that models these differences
in spatial resolution of satellite imagery. Therefore, we modify
zero-shot soundscape mapping to multi-scale zero-shot soundscape
mapping, allowing ground-level sounds to be mapped with satellite
imagery at different zoom levels. We achieve this by learning a
shared satellite image encoder across zoom levels using Ground-
Sample Distance Positional Embedding (GSDPE) [38].

Our modalities of interest, satellite imagery, audio, and text, of-
ten have associated metadata that convey meaningful information
(such as latitude and longitude or the source of an audio sample).
We propose to fuse such metadata: location, time, and source from
which the audio was collected, into our framework. We demon-
strate that such information increases the discriminative power of
our embedding space and allows the creation of soundscape maps
conditioned on dynamic metadata settings during inference.

The most closely related prior work [26] in soundscape mapping
was trained on limited data (∼ 35k samples) from the SoundingEarth
dataset [21]. To advance research in this area, we curated a new
large-scale dataset, GeoSound,collecting geotagged audios from four
different sources, we increased the dataset size by six-fold to over
300k samples. We use GeoSound to train our framework that ad-
vances the state-of-the-art in zero-shot soundscape mapping by
learning a probabilistic, scale-aware, and metadata-aware joint mul-
timodal embedding space. Moreover, we demonstrate the capability
of the proposed framework in the creation of temporally dynamic
soundscape maps.

The main contributions of our work are as follows:
• We introduce a new large-scale dataset containing over 300k
geotagged audios paired with high-resolution (0.6m) and
low-resolution (10m) satellite imagery.

• We learn a metadata-aware, probabilistic embedding space
between satellite imagery, audio, and textual audio descrip-
tion for zero-shot multi-scale soundscape mapping.

• Wedemonstrate the utility of our framework (PSM:Probabilistic
Soundscape Mapping) in creating large-scale soundscape
maps created by querying our learned embedding space
with audio or text.

2 RELATEDWORKS
2.1 Audio Visual Learning
An intricate relationship exists between the audio and visual at-
tributes of a scene. Utilizing this relationship, there have been
numerous works in the field of audio-visual learning. [10, 21, 22, 24,
26, 34, 39, 47, 48]. Owens et al. [34] have demonstrated that encour-
aging the models to predict sound characteristics of a scene allows
them to learn richer representations useful for visual recognition
tasks. Hu et al. [22] proposed to learn from audio and images to
solve the task of aerial scene recognition. Relatively closer to the
formulation of our work, Salem et al. [39] proposed to learn a shared
feature space between satellite imagery, ground-level concepts, and

audio, which allowed them to predict sound cluster distribution
across large geographic regions. Recently, Khanal et al. [26] pro-
posed the learning of a tri-modal embedding space to map satellite
imagery with the most likely audio at a location.

2.2 Deterministic Contrastive Learning
The contrastive learning paradigm [29, 37, 41, 44] has significantly
advanced state-of-the-art multimodal learning capabilities through
rich cross-modal supervision. In the pursuit of advancing con-
trastive learning approaches for audio and text, Elizalde et al. [15]
and Wu et al. [46] have developed a Contrastive Language-Audio
Pretraining (CLAP) framework, showcasing strong zero-shot ca-
pabilities. Wav2CLIP [45] distills information learned from CLIP
to create a joint image-audio embedding space. AudioCLIP [20]
extends contrastive learning to audio, image, and text, exhibiting
impressive performance across various downstream tasks. Recently,
Heidler et al. proposed learning a shared representation space be-
tween audio and corresponding satellite imagery for use in various
downstream tasks in remote sensing. Similarly, Khanal et al. [26]
utilized the SoundingEarth dataset [21] to train a multimodal em-
bedding space using a deterministic contrastive loss [33] and used
this model for zero-shot soundscape mapping.

2.3 Probabilistic Contrastive Learning
In our formulation of soundscape mapping, the satellite image
provided as location context captures a geographic area containing
many sound sources. As such, deterministic contrastive learning
approaches cannot capture the inherent ambiguity in the mapping
from satellite image to sound, as any sample can only be represented
by a single point in the embedding space. This limitation can be
addressed by representing embeddings probabilistically [8, 9, 12,
13, 23, 25, 31, 40, 43]. In other words, each sample in probabilistic
embedding space is represented by a probability distribution whose
parameters are learned, usually by a neural network.

Probabilistic Cross-Modal Embeddings (PCME) [13] represents
samples as gaussian distributions in the embedding space and trains
their framework using a contrastive loss between the sample dis-
tributions computed by Monte-Carlo sampling. Chun [12] later
introduced PCME++, which improves PCME by using a closed-
form distance formulation, eliminating the need for sampling. We
adopt PCME++ to learn a probabilistic embedding space for audio,
its textual description, and multi-scale satellite imagery.

3 METHODS
3.1 Dataset Creation
Prior work in zero-shot soundscape mapping [26] has utilized the
SoundingEarth dataset [21], which contains approximately 50k geo-
tagged audios paired with corresponding satellite imagery. To fa-
cilitate research on training large-scale models with a rich repre-
sentation space for soundscape mapping, we have expanded the
size of the dataset 6-fold by creating a dataset containing 309 019
geo-tagged audios from four different sources: iNaturalist [4], yfcc-
video [42], aporee [5], and freesound [2], each contributing 114 603,
96 452, 49 284, and 48 680 samples respectively. We pair these geo-
tagged audios with their corresponding Sentinel-2-cloudless imagery
[1] with 10m GSD and Bing imagery with 0.6m GSD.
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Figure 1: Our proposed framework, Probabilistic Soundscape Mapping (PSM), combines image, audio, and text encoders to
learn a probabilistic joint representation space. Metadata, including geolocation (l), month (m), hour (h), audio-source (a), and
caption-source (t), is encoded separately and fused with image embeddings using a transformer-based metadata fusion module.
For each encoder, 𝜇 and 𝜎 heads yield probabilistic embeddings, which are used to compute probabilistic contrastive loss.

In the prior work, GeoCLAP [26], samples were randomly split
between train/validation/test sets for training and evaluating their
models. We observed that such a data split strategy leads to the
issue of data leakage where evaluation data samples come from
the same set of locations present in the training set, preventing
the evaluation of the generalizability of a model to truly unseen
locations. To address this, we divide the world into 1° × 1° non-
overlapping cells where each cell containing some samples is ran-
domly assigned to either train/validation/test set. Our dataset con-
tains 294 019/5000/10 000 samples in the train/validation/test sets.
We also employ our split strategy on the SoundingEarth dataset with
a cell size of 10𝑘𝑚 × 10𝑘𝑚. This strategy resulted in 41 469/3242/5801
samples in train/validation/test sets. Details of our dataset and split
strategy are in the supplemental material.

3.2 Approach
This section describes our framework (PSM) for learning ametadata-
aware, probabilistic, and tri-modal embedding space for multi-scale
zero-shot soundscape mapping.

Figure 1 presents an overview of the PSM framework, which
comprises an image encoder, metadata fusion module, text encoder,
and audio encoder. The scale-aware image encoder converts multi-
scale satellite imagery into a 𝑑-dimensional representation. The
transformer-based metadata fusion module integrates metadata
(including location, month, time, audio source, and text source)
with the image representation, generating a metadata-aware prob-
abilistic image representation. Other modality-specific encoders
produce probabilistic embeddings for text and audio. PSM aims
to map tuples of satellite imagery, audio, and text into a shared
probabilistic representation space.

Given a geotagged audio 𝑋𝑎
𝑘
, textual description of the audio 𝑋 𝑡

𝑘
,

and a satellite image at a given location viewed at a zoom level 𝑙
(an integer between 1 and some maximum zoom level 𝐿) 𝑋 𝑖

𝑘,𝑙
,

(𝑋𝑎
𝑘
,𝑋 𝑡

𝑘
,𝑋 𝑖

𝑘,𝑙
) is the 𝑘-th audio-text-image triplet. PSM is trained

over the aggregation of all available triplets.
We use modality-specific transformer-based encoders followed

by their respective linear projection modules to obtain representa-
tions (ℎ𝑎

𝑘
,ℎ𝑡
𝑘
,ℎ𝑖
𝑘,𝑙
) with same dimension 𝑑 ,

ℎ𝑎
𝑘
= 𝑔𝑎𝑢𝑑𝑖𝑜 (𝑓𝑎𝑢𝑑𝑖𝑜 (𝑋𝑎

𝑘
)) (1)

ℎ𝑡
𝑘
= 𝑔𝑡𝑒𝑥𝑡 (𝑓𝑡𝑒𝑥𝑡 (𝑋 𝑡

𝑘
)) (2)

ℎ𝑖
𝑘
= 𝑔𝑖𝑚𝑎𝑔𝑒 (𝑓𝑖𝑚𝑎𝑔𝑒 (𝑋 𝑖

𝑘
, 𝑙𝑘 )) (3)

where (𝑓𝑎𝑢𝑑𝑖𝑜 , 𝑔𝑎𝑢𝑑𝑖𝑜 ), (𝑓𝑡𝑒𝑥𝑡 , 𝑔𝑡𝑒𝑥𝑡 ), (𝑓𝑖𝑚𝑎𝑔𝑒 , 𝑔𝑖𝑚𝑎𝑔𝑒 ) are (encoder,
projection-module) pairs producing 𝑑 dimensional embeddings: ℎ𝑎

𝑘
,

ℎ𝑡
𝑘
, and ℎ𝑖

𝑘
, for audio, text, and satellite image with zoom-level 𝑙𝑘

respectively.
We use GSDPE [38] to encode the position and scale of each

patch of satellite imagery at zoom-level (𝑙) to learn scale-aware
representations of multi-scale satellite imagery,

𝑣𝑙,𝑥 (𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛(𝑔 ∗ 𝑙
𝐺

) 𝑝𝑜𝑠

10000
2𝑖
𝑑

(4)

𝑣𝑙,𝑦 (𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠 (𝑔 ∗ 𝑙
𝐺

) 𝑝𝑜𝑠

10000
2𝑖
𝑑

(5)

where 𝑝𝑜𝑠 is the position of the image patch along the given axis
(𝑥 or 𝑦), 𝑖 is the feature dimension index, 𝑙 is the zoom-level of the
image, 𝑔 is the GSD of the image, and 𝐺 is the reference GSD.

As discussed before, we are interested in learning metadata-
aware representation space. Therefore, we fuse four different com-
ponents ofmetadata (geolocation, month, hour, audio-source, caption-
source) with the satellite image embedding (ℎ𝑖

𝑘
) and obtain ametadata-

conditioned image embedding (ℎ𝑖′
𝑘
),

ℎ𝑖
′

𝑘
= 𝑔𝑚𝑒𝑡𝑎 (ℎ𝑖𝑘 ,𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎) (6)
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where 𝑔𝑚𝑒𝑡𝑎 is a transformer based metadata fusion module of our
framework, ℎ𝑖′

𝑘
is the embedding corresponding to the learnable

special token (*) fed into 𝑔𝑚𝑒𝑡𝑎 .
To learn a probabilistic embedding space, we define the em-

bedding of a given modality (𝑟 ) as a normally distributed random
variable, 𝑍𝑟 ∼ 𝑁 (𝜇𝑟 , 𝜎𝑟 ). We employ a closed-form probabilistic
contrastive loss [12] between all three pairs of embeddings. For any
two modalities 𝑝 and 𝑞, the closed-form sampled distance (CSD) as
defined in PCME++ [12] is as follows:

𝑑 (𝑍𝑝 , 𝑍𝑞) = ∥𝜇𝑝 − 𝜇𝑞 ∥22 + ∥𝜎2𝑝 + 𝜎2𝑞 ∥1 . (7)

In our implementation, we pass our modality-specific represen-
tations, ℎ𝑎

𝑘
, ℎ𝑡

𝑘
, and ℎ𝑖

′

𝑘
, through heads for 𝜇 and log(𝜎2) of the

gaussian distribution representing our samples.
This distance is used to compute matching loss between the pairs

as shown in Equation 8. For positive (certain) matches, to reduce
distance, 𝜇 embeddings are pulled closer together while minimizing
𝜎 embeddings in ∥𝜎2𝑝 + 𝜎2𝑞 ∥1. Similarly, for negative (uncertain)
match, to increase the distance, 𝜇 embeddings are pushed farther
while maximizing 𝜎 embeddings in ∥𝜎2𝑝 + 𝜎2𝑞 ∥1.

Based on the distance function defined in Equation 7, we can
define the probabilistic matching objective function as follows:

L𝑚 = −[𝑤𝑝𝑞 log(sigmoid(−𝑎.𝑑 (𝑍𝑝 , 𝑍𝑞) + 𝑏))+
(1 −𝑤𝑝𝑞) log(sigmoid(𝑎.𝑑 (𝑍𝑝 , 𝑍𝑞) − 𝑏))] (8)

where 𝑤𝑝𝑞 ∈ {0, 1} is the matching indicator between 𝑝 and 𝑞. 𝑎
and 𝑏 are learnable scalar parameters. L𝑚 (L𝑚𝑎𝑡𝑐ℎ) is computed
for all sample pairs in the mini-batch.

Soundscapemapping is inherently a one-to-manymatching prob-
lem. Given a satellite image at a location, there may be multiple
sounds that are likely to be heard there. Therefore, if we were to
simply assign𝑤𝑝𝑞 as 0 or 1 for our dataset’s negative and positive
matches, we would lose the opportunity to learn from the poten-
tially numerous false negatives. Therefore, we adopt a similar strat-
egy of learning from pseudo-positives, as formulated by Chun [12].
In this approach, for a positive match (𝑝 ,𝑞), we consider 𝑞′ as a
pseudo-positive match (pseudo-m) with 𝑞 if 𝑑 (𝑍𝑝 , 𝑍𝑞′ ) ≤ 𝑑 (𝑍𝑝 , 𝑍𝑞).
Finally, the objective function for a pair of modalities (𝑝, 𝑞) is as
follows:

L𝑝,𝑞 = L𝑚 + 𝛼L𝑝𝑠𝑒𝑢𝑑𝑜−𝑚 + 𝛽L𝑉 𝐼𝐵 (9)

where 𝛼 and 𝛽 control for the contribution of pseudo-match loss
and Variational Information Bottleneck (VIB) loss [7], respectively.
We use L𝑉 𝐼𝐵 as a regularizer to reduce overfitting, preventing the
collapse of 𝜎 to 0.

To learn a tri-modal embedding space for zero-shot soundscape
mapping, using Equation 9, we separately compute loss for all three
pairs of modalities: audio-text (𝑎, 𝑡 ), audio-image (𝑎, 𝑖), and image-
text(𝑖, 𝑡 ). Finally, the overall objective function to train PSM is as
follows:

L = L𝑎,𝑡 + L𝑎,𝑖 + L𝑖,𝑡 . (10)

4 EXPERIMENTAL DETAILS
Audio/Text Processing: We use pre-trained models for the audio
and text modalities and their respective input processing pipelines

hosted on HuggingFace. Specifically, for audio, we extract the au-
dio spectrogram using the ClapProcessor wrapper for the pre-
trained CLAP [46] model clap-htsat-fused with default parame-
ters: feature_size=64, sampling_rate=48000, hop_length=480,
fft_window_size=1024. CLAP uses a feature fusion strategy [46]
to pre-process variable length sounds by extracting a spectrogram
of randomly selected 3 𝑑-second audio slices and the spectrogram
of the whole audio down-sampled to 10s. We choose 𝑑 =10s in our
experiments. Apart from the text present in the metadata, we also
obtain a textual description of audio from a recent SOTA audio cap-
tioning model, Qwen-sound [11], and use the captioning model’s
output only if it passes CLAP-score [46] based quality check. For
the textual descriptions of audio in our data, we adopt the similar
text processing as performed by CLAP [46] and tokenize our text
using RobertaTokenizer with max_length=128.

Satellite image processing: Our framework is trained with
satellite images at different zoom levels 𝑙 ∈ {1, 3, 5}. To obtain this
data, we first downloaded a large tile of images with size (𝐿ℎ)×(𝐿𝑤).
We obtained high-resolution 0.6m GSD imagery with a tile size of
1500 × 1500 from Bing and low-resolution 10m GSD imagery with
a tile size of 1280 × 1280 from Sentinel-2-cloudless. To get an image
at zoom-level 𝑙 , we center crop from the original tile with a crop
size of (𝑙ℎ) × (𝑙𝑤) and then resize it to an ℎ × 𝑤 image, where
(ℎ,𝑤) is (256, 256) for Sentinel-2 imagery and (300, 300) for Bing
imagery. This way, we can simulate the effect of change in coverage
area as the zoom-level changes while effectively keeping constant
input image size for training. During training, we randomly sam-
ple 𝑙 from a set {1, 3, 5} for each image instance. Then, for the
zoom-transformed image, we perform RandomResizedCrop with
parameters: {input_size=224, scale=(0.2, 1.0)} followed by
a RandomHorizontalFlip while only extracting a 224 × 224 center
crop of the image at the desired zoom-level 𝑙 for evaluation.

Metadata Fusion: To fuse metadata into our framework, we first
separately project the metadata components into 512-dimensional
space using linear layers and concatenate them with the satellite
image embedding from the image encoder and a learnable special
token. Finally, the set of tokens is fed into a lightweight transformer-
based module containing only 3 layers. The output of this module
is further passed through heads for 𝜇 and log(𝜎2) of the Gaussian
distribution representing metadata-conditioned image embeddings.
To avoid overfitting to the metadata, we independently drop each
metadata component at the rate of 0.5 during training.

Training:We initialize encoders from released weights of pre-
trainedmodels, SatMAE [14] for satellite imagery and CLAP [46] for
audio and text. We chose 𝑑 , the dimensionality of our embeddings,
to be 512. For regularization, we set the weight decay to 0.2. Our
training 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 was 128. We use Adam as our optimizer, with the
initial learning rate set to 5𝑒 − 5. To schedule the learning rate, we
use cosine annealing with warm-up iterations of 5𝑘 for experiments
with GeoSound and 2𝑘 for experiments with SoundingEarth.

Baseline: We use GeoCLAP [26], a SOTA zero-shot soundscape
mapping model, as a baseline for evaluation. GeoCLAP is con-
trastively trained using the infoNCE [33] loss between three modal-
ity pairs: image-audio, audio-text, and image-text.

Metrics:Weevaluate on two datasets:GeoSound, and SoundingEarth.
We use Recall@10% and the Median Rank of the ground truth as our
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method loss meta/train text/eval meta/eval ZL I2A R@10% I2A MdR A2I R@10% A2I MdR
GeoCLAP infoNCE ✗ ✗ ✗ 1 0.399 1500 0.403 1464
GeoCLAP infoNCE ✗ ✓ ✗ 1 0.577 712 0.468 1141
ours infoNCE ✓ ✓ ✓ 1 0.709 462 0.871 241
ours PCME++ ✗ ✗ ✗ 1 0.423 1401 0.428 1344
ours PCME++ ✓ ✗ ✓ 1 0.828 261 0.829 248
ours PCME++ ✓ ✓ ✓ 1 0.901 113 0.943 100

GeoCLAP infoNCE ✗ ✗ ✗ 3 0.408 1441 0.420 1389
GeoCLAP infoNCE ✗ ✓ ✗ 3 0.577 707 0.483 1056
ours infoNCE ✓ ✓ ✓ 3 0.708 462 0.875 235
ours PCME++ ✗ ✗ ✗ 3 0.440 1302 0.443 1266
ours PCME++ ✓ ✗ ✓ 3 0.827 266 0.832 250
ours PCME++ ✓ ✓ ✓ 3 0.900 114 0.945 102

GeoCLAP infoNCE ✗ ✗ ✗ 5 0.409 1428 0.421 1373
GeoCLAP infoNCE ✗ ✓ ✗ 5 0.581 698 0.489 1036
ours infoNCE ✓ ✓ ✓ 5 0.709 461 0.875 238
ours PCME++ ✗ ✗ ✗ 5 0.440 1302 0.448 1279
ours PCME++ ✓ ✗ ✓ 5 0.821 281 0.826 261
ours PCME++ ✓ ✓ ✓ 5 0.896 115 0.941 107

Table 1: Experimental results for models trained on the GeoSound dataset with satellite imagery from Bing.

method loss meta/train text/eval meta/eval ZL I2A R@10% I2A MdR A2I R@10% A2I MdR
GeoCLAP infoNCE ✗ ✗ ✗ 1 0.459 1179 0.465 1141
GeoCLAP infoNCE ✗ ✓ ✗ 1 0.546 827 0.553 804
ours infoNCE ✓ ✓ ✓ 1 0.722 497 0.860 247
ours PCME++ ✗ ✗ ✗ 1 0.474 1101 0.485 1061
ours PCME++ ✓ ✗ ✓ 1 0.802 294 0.804 283
ours PCME++ ✓ ✓ ✓ 1 0.872 142 0.940 104

GeoCLAP infoNCE ✗ ✗ ✗ 3 0.454 1200 0.456 1197
GeoCLAP infoNCE ✗ ✓ ✗ 3 0.542 840 0.555 790
ours infoNCE ✓ ✓ ✓ 3 0.722 491 0.856 248
ours PCME++ ✗ ✗ ✗ 3 0.479 1086 0.487 1042
ours PCME++ ✓ ✗ ✓ 3 0.795 306 0.800 290
ours PCME++ ✓ ✓ ✓ 3 0.870 150 0.940 104

GeoCLAP infoNCE ✗ ✗ ✗ 5 0.458 1194 0.457 1184
GeoCLAP infoNCE ✗ ✓ ✗ 5 0.542 835 0.554 791
ours infoNCE ✓ ✓ ✓ 5 0.719 497 0.852 252
ours PCME++ ✗ ✗ ✗ 5 0.459 1172 0.465 1138
ours PCME++ ✓ ✗ ✓ 5 0.794 316 0.794 299
ours PCME++ ✓ ✓ ✓ 5 0.868 156 0.935 109

Table 2: Experimental results for models trained on the GeoSound dataset with satellite imagery from Sentinel-2.

evaluation metrics. Recall@10% (R@10%) is defined as the propor-
tion of queries for which the ground-truth match is found within
the top 10% of the returned ranked retrieval list. Median Rank (MdR)
is defined as the median of the positions at which the ground-truth
matches appear in the ranked retrieval list. We denote image-to-
audio as I2A and audio-to-image as A2I throughout the paper. To

assess the effectiveness of text embeddings in cross-modal retrieval
between satellite images and audio, we also evaluate an experimen-
tal setting where, during inference, we add the corresponding text
embedding to the query embedding during retrieval.
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method loss meta/train text/eval meta/eval I2A R@10% I2A MdR A2I R@10% A2I MdR
GeoCLAP infoNCE ✗ ✗ ✗ 0.454 667 0.449 694
GeoCLAP infoNCE ✗ ✓ ✗ 0.523 533 0.470 641
ours infoNCE ✓ ✓ ✓ 0.519 548 0.491 596
ours PCME++ ✗ ✗ ✗ 0.514 547 0.518 543
ours PCME++ ✓ ✗ ✓ 0.563 454 0.569 447
ours PCME++ ✓ ✓ ✓ 0.690 264 0.608 371

Table 3: Experimental results for models trained on the SoundingEarth dataset.

imagery latlong month time audio source text source I2A R@10% I2A MdR A2I R@10% A2I MdR
Sentinel-2 ✓ ✗ ✗ ✗ ✗ 0.512 946 0.516 923
Sentinel-2 ✗ ✓ ✗ ✗ ✗ 0.501 988 0.511 941
Sentinel-2 ✗ ✗ ✓ ✗ ✗ 0.548 825 0.574 717
Sentinel-2 ✗ ✗ ✗ ✓ ✗ 0.749 407 0.757 389
Sentinel-2 ✗ ✗ ✗ ✗ ✓ 0.483 1080 0.492 1022
Bing ✓ ✗ ✗ ✗ ✗ 0.539 822 0.557 764
Bing ✗ ✓ ✗ ✗ ✗ 0.464 1153 0.485 1068
Bing ✗ ✗ ✓ ✗ ✗ 0.516 937 0.547 823
Bing ✗ ✗ ✗ ✓ ✗ 0.722 469 0.733 447
Bing ✗ ✗ ✗ ✗ ✓ 0.448 1250 0.466 1140

Table 4: Metadata ablation to evaluate the impact of individual metadata components on the best model’s performance. The best
model for each imagery type was trained with all metadata types and can handle multiple zoom levels. The results presented
are specific to satellite imagery at zoom level 1, with no text embeddings added to the query embeddings during inference.

5 RESULTS
5.1 Cross-Modal Retrieval with Bing
Table 1 presents our retrieval evaluation of PSM trained on the
GeoSound dataset using Bing satellite imagery. Our approach out-
performs the state-of-the-art baseline [26] for cross-modal retrieval
between satellite imagery and audio, and vice versa. SatMAE [14]
with GSDPE is utilized to encode the zoom level of the satellite
imagery for both the baseline and our models. This enables our
satellite image encoder to remain invariant to zoom-level changes,
achieving consistent performance across all zoom levels. We ob-
serve that learning a probabilistic embedding space using PCME++
loss alone enhances the baseline performance from 0.399 to 0.423,
0.408 to 0.440, and 0.409 to 0.440 for zoom levels 1, 3, and 5, respec-
tively. In addition to the objective function, we also experimented
with the inclusion of metadata during training and inference. As
anticipated, the model’s performance, when trained and evaluated
with both text and metadata, is notably improved, enhancing image-
to-audio R@10% from the baseline score of 0.577 to 0.901, 0.577 to
0.900, and 0.581 to 0.896 for zoom levels 1, 3, and 5, respectively. A
similar trend is observed for audio-to-image retrieval.

5.2 Cross-Modal Retrieval with Sentinel-2
Table 2 presents the evaluation results of PSM trained on the
GeoSound dataset using Sentinel-2 satellite imagery. Similar to re-
sults with Bing imagery, we observe consistent performance across
various zoom levels, indicating the robustness of our framework in

extracting valuable information irrespective of the coverage area
of input satellite imagery. By employing PCME++ loss in training
our framework, we note an enhancement in the baseline perfor-
mance from 0.459 to 0.474 for zoom level 1. Overall, PSM trained
with Sentinel-2 imagery and metadata, and evaluated using both
metadata and text during inference, significantly improved the base-
line score from 0.546 to 0.872, 0.542 to 0.870, and 0.542 to 0.868 for
zoom levels 1, 3, and 5, respectively. A similar trend is observed for
audio-to-image retrieval. Moreover, the high performance of PSM
on Sentinel-2 imagery at zoom level 5 enables the efficient creation
of large-scale soundscape maps using freely available Sentinel-2
imagery while requiring fewer images to download.

5.3 Cross-Modal Retrieval on SoundingEarth
Table 3 presents the evaluation results of PSM trained on the
SoundingEarth dataset [21] with its original 0.2m GSD GoogleEarth
imagery. For the SoundingEarth dataset, our models are exclusively
trained and evaluated on zoom level 1. Similar to the performance
observed on the GeoSound dataset, we witness gain in performance
with our approach of learning a metadata-aware probabilistic em-
bedding space. Specifically, by training with the PCME++ objective
instead of the infoNCE loss, we note an improvement in the score
from 0.454 to 0.514. This performance further elevates to 0.563 when
metadata is incorporated and reaches 0.690 when both metadata
and text are utilized during inference. We observe similar trends
for audio-to-image retrieval as well.
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Figure 2: Soundscape Map of the USA for a textual query Sound of insects, compared with a reference map [3] indicating the
risk of pest-related hazard.

Figure 3: Two soundscape maps of the continental United
States, generated using different query types, with a land
cover map [17] for reference.

5.4 Effect of Metadata
Our experimental results reveal a significant enhancement in the
model’s performance when metadata is integrated into both train-
ing and inference. For comparison, as illustrated in Table 1, PSM
trained with Bing imagery without any metadata achieved an I2A

R@10% of 0.423, whereas with all metadata included, it reached
0.828. A similar trend is seen for experiments with Sentinel-2 im-
agery. PSM is designed such that individual metadata components
are independently masked out with a rate of 0.5. Therefore, during
inference, we can evaluate PSM by dropping any combination of
metadata components.

In Table 4, we present the ablation of different metadata compo-
nents to evaluate the impact of individual metadata components in
PSM’s learning framework. We perform this ablation on our best-
performing models trained on the GeoSound dataset with Sentinel-2
and Bing imagery. The results in Table 4 exclude the use of text
during cross-modal retrieval and utilize satellite imagery at zoom
level 1 during inference. These results highlight two major find-
ings. First, all of the metadata components contribute to the overall
improvement of PSM’s performance. Second, among all of the meta-
data components, audio-source had the most significant impact.
This suggests that biases in different audio hosting platforms are
encoded into the learning framework, improving cross-modal re-
trieval and enabling soundscape maps conditioned on the expected
audio type from specific platforms.

5.5 Generating Country-Level Soundscape Maps
We demonstrate PSM’s capability to generate large-scale sound-
scape maps using audio and text queries. We acquired 0.6 m GSD
1500 × 1500 image tiles encompassing the entire USA from Bing.

Using our top-performingmodel’s image encoder, we pre-compute
embeddings for each image at zoom level 1. During inference, these
are combined with desired metadata embeddings via the model’s
metadata fusion module to obtain metadata-conditioned probabilis-
tic embeddings for the entire region.

We use modality-specific encoders to obtain probabilistic em-
beddings for audio or text queries. To compute similarity scores
between image embeddings and query embeddings, we utilize Equa-
tion 7 as detailed in our paper. These scores are then used to produce
large-scale soundscape maps, as shown in Figures 2 and 3.

6 DISCUSSION
Figure 2 depicts a soundscape map generated for the textual query
“Sound of insects”, accompanied by the following metadata: {audio
source: iNaturalist, month: May, time: 8 pm}. Notably,
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Figure 4: Temporally dynamic soundscape maps created by querying our model for different geographic areas.

this soundscape map exhibits a strong correlation with an avail-
able reference map [3], which shows potential pest hazards across
the continental United States. Figure 3 showcases two soundscape
maps: one for an audio query of car horn with the metadata {audio
source: yfcc, month: May, time: 10 am}, and another for
a textual query “Sound of chirping birds.” with metadata: {audio
source: iNaturalist, month: May, time: 10 am}. Both maps
can be compared with a land cover map [17]. As expected, for the
car horn query, higher activation is observed in most major US
cities, while for chirping birds, increased activation is observed
around both urban areas and forests.

We also note that the soundscape of any geographic region
evolves predictably over a day. Therefore, the hour of the day is one
of the important metadata components fused into our framework.
In addition to contributing to increased performance, temporal un-
derstanding fused into our embedding space allows us to create
temporally dynamic soundscape maps across any geographic re-
gion, as demonstrated in Figure 4. The similarity scores used for
these soundscape maps were normalized consistently for a region
across time. We display state-level temporally dynamic soundscape
maps for an audio query: Rooster crowing with metadata: {audio
source: aporee, month: May, time: 6 am} vs. {audio source:
aporee, month: May, time: 6 pm}. We observe that for both
states, higher activation for the rooster crowing audio query is seen
on the soundscape map at 6 am. We also showcase city-level tempo-
rally dynamic soundscape maps for a text query “Sound of a sheep
in an animal farm.”. We can observe that for areas around both
cities, Kansas City and Des Moines, very low activation is present.
Additionally, higher activation is observed at 2 pm than at 2 am,
which is expected. These demonstrations highlight the ability of our

model to create semantically meaningful and temporally consistent
soundscape maps across any geographic regions of interest.

7 CONCLUSION
Our work introduces a framework for learning probabilistic tri-
modal embeddings for the task of multi-scale zero-shot soundscape
mapping. To advance research in this direction, we have developed
a new large-scale dataset that pairs geotagged audio with high
and low-resolution satellite imagery. By utilizing a probabilistic tri-
modal embedding space, our method surpasses the state-of-the-art
while also providing uncertainty estimates for each sample. Further-
more, we have designed our framework to be metadata-aware, re-
sulting in a significant improvement in cross-modal retrieval perfor-
mance. Additionally, it enables the creation of dynamic soundscape
maps conditioned on different types of metadata. The combination
of enhanced mapping performance, uncertainty estimation, and
a comprehensive understanding of spatial and temporal dynam-
ics positions our framework as an effective solution for zero-shot
multi-scale soundscape mapping.
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A DATASET CREATION

Figure 5: Distribution of samples in the GeoSound dataset.

Wehave created a new large-scale dataset (GeoSound) suitable for
the task of zero-shot soundscapemapping, effectively increasing the
size of available dataset [21] bymore than 6-fold. To achieve this, we
collected geotagged audios along with associated metadata (textual
description, geolocation, time) from four different audio sources:
iNaturalist [4], YFCC100M [42], Radio Aporee [5], and Freesound [2].
For each of the audio samples in our dataset, we downloaded 1500×
1500 high-resolution (0.6m GSD) imagery from Bing and 1280 ×
1280 low-resolution (10m GSD) Sentinel-2 Cloudless imagery from
EOX::Maps [1]. Figure 5 illustrates the geospatial distribution of
data samples in the GeoSound dataset worldwide.

A.1 Audio Sources
iNaturalist: This is an open-source platform for the community
of Naturalists who upload observations for various species with
records containing images, audio, and textual descriptions. We se-
lect observations with the flags: Verifiable, Research Grade,
and Has Sounds to maximize data quality and completeness. This
provides us with over 450k geotagged audios. To create a relatively
balanced dataset with audio from different crowd-sourced plat-
forms, we first only retain the species with at least 100 samples in
our dataset. Then, we conduct round-robin random sampling of the
observations, starting from the species with the lowest count and
iteratively increasing the sample size until we reach our desired
number of samples: 120k from 611 species. Finally, after a quality
control filtering procedure, iNaturalist contributes 114 603 audios.

YFCC100M: YFCC100M is a publicly available, large multimedia
dataset containing over 99 million images and around 0.8 million
videos. This data is collected from the crowd-sourced platform
Flickr. However, among the 0.8 million videos, only around 100k
videos are found to be geotagged. Therefore, in our dataset, we
extract audio from these geotagged videos only, contributing an
additional 96 452 audio samples.

Radio Aporee: In our dataset, we also include the geotagged au-
dios from the SoundingEarth dataset [21], which was built from the
crowd-sourced platform hosted by the project Radio Aporee::Maps.
This dataset contains field recordings of different types of audio
from urban, rural, and natural environments. The SoundingEarth
dataset contributes 49 284 audio samples.

Freesound: This is another commonly used platform for crowd-
sourced audio containing field recordings from diverse acoustic
environments. Freesound contributes a total of 48 680 audio samples.

split iNaturalist yfcc aporee freesound total
train 108 753 92 055 46 893 46 318 294 019
val 1 851 1 565 797 787 5 000
test 3 999 2 832 1 594 1 575 10 000
total 114 603 96 452 49 284 48 680 309 019

Table 5: Distribution of GeoSound Dataset Across Splits and
Audio Sources.

A.2 Data Split Strategy
We split our dataset to mitigate potential data leakage between data
with similar locations in the training and validation/test sets. The
distribution of data across training/validation/test sets and audio
sources is given in Table 5. Our data split strategy on GeoSound
dataset is described as follows:

(1) We divide the world into 1° × 1° non-overlapping cells. This
corresponds to the cell size of about 111km × 111km.

(2) We only select the cells with at least 25 observations. The
cells that do not pass this threshold are saved to be included
in the train split of our dataset.

(3) Based on the number of observations in each cell selected in
step 2, we categorize them into three data density categories:
high, medium, and low based on the 0.33 quantile and 0.66
quantile of the overall sample count from step 2.

(4) For each category obtained in step 3, we randomly select
10% of cells to be held out for validation and test splits.

(5) From the held-out cells obtained in step 4, we randomly
sample 40% into validation split and the rest into test split.

(6) For the validation/test split, 5000/10000 samples are ran-
domly selected, matching the audio-source distribution of
the train split.

B UNCERTAINTY ESTIMATES
One of the advantages of PSM is that uncertainty estimates are
automatically provided with representations of samples. After a
sample is encoded, the 𝜎 associated with the distribution predicted
by our framework represents its inherent uncertainty for any audio
or satellite imagery. In Figure 6, we present sets of samples with
high uncertainty and low uncertainty for Bing satellite imagery in
our test set.
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Figure 6: Uncertainty estimates are reflected by the | |𝜎 | |1 of selected samples from our Bing satellite imagery test set. These
estimates are obtained from embeddings generated by our best-performing model trained on Bing imagery, without any
additional metadata.

Figure 7: Uncertainty map of the satellite image embeddings for the USA. Uncertainty at each location is approximated as
the | |𝜎 | |1 of the probabilistic embeddings obtained from our best-performing model trained with Bing and Sentinel-2 imagery,
respectively, without any metadata.

The embedding dimension of our probabilistic embeddings is
large (512); therefore, in these examples, uncertainty estimates are
represented through ∥𝜎 ∥1 for each sample.We observe that samples
with low uncertainty have fewer visible concepts captured in them,
suggesting less ambiguity in the types of potential sounds that
could be heard at the location. Conversely, for samples with high
uncertainty, we usually find denser geographic areas where one

would expect to hear multiple types of sounds, leading to higher
ambiguity in soundscape mapping.

We also present country-scale uncertaintymaps of the USA using
PSM’s satellite embeddings from both Bing and Sentinel-2. These
maps are shown for zoom levels 1 and 5 in Figure 7. From this
figure, we observe that the overall distribution of uncertainty tends
to be lower for zoom level 1 compared to zoom level 5. This result is
expected because imagery at zoom level 5 covers a larger geographic
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meta/train text/eval meta/eval R@10% MdR
GeoSound-Bing

✗ ✗ ✗ 0.423 1401
✓ ✗ ✗ 0.425 1359
✓ ✗ ✓ 0.828 261
✓ ✓ ✗ 0.776 213
✓ ✓ ✓ 0.901 113

GeoSound-Sentinel2
✗ ✗ ✗ 0.474 1101
✓ ✗ ✗ 0.464 1144
✓ ✗ ✓ 0.802 294
✓ ✓ ✗ 0.730 256
✓ ✓ ✓ 0.872 142

SoundingEarth
✗ ✗ ✗ 0.514 547
✓ ✗ ✗ 0.514 550
✓ ✗ ✓ 0.563 454
✓ ✓ ✗ 0.651 315
✓ ✓ ✓ 0.690 264

Table 6: Evaluation of PSM under different settings for
the datasets: GeoSound-Bing, GeoSound-Sentinel2, and
SoundingEarth. The results are Recall@10% (R@10%) and
Median-Rank (MdR) for Image-to-Audio retrieval with
satellite image at zoom level 1. Results highlighted with
underlined text represent the evaluation of PSM without
using any metadata during inference, for comparison with
other evaluations presented in the main paper.

area, potentially capturing a greater diversity of soundscapes and
leading to higher uncertainty in our probabilistic embedding space.
Furthermore, a closer examination of the uncertainty values reveals
that uncertainty estimates for Sentinel-2 image embeddings are
relatively higher across more locations in the region compared
to Bing image embeddings. This is expected because for a similar
image size, a Sentinel-2 image with 10m Ground Sampling Distance
(GSD) covers a larger area compared to a Bing image with 0.6m
GSD used in our study.

C METADATA DEPENDENCY
We provide a comparison of our framework’s performance without
using metadata during evaluation, as shown in Table 6. As observed,
the performance of PSM with text added to query embeddings,
without including any other metadata, remains comparable to the
best setting, which includes both text and metadata during retrieval.
Using metadata without text in the query improves performance
compared to not using either. This highlights the importance of
encoding the dynamic nature of the soundscape based on location
(latitude and longitude), season (month), and hour of the day (time).
It is worth noting that, as shown in Table 4 of the main paper, which
presents an ablation study of different metadata components, audio
source is the most important metadata. Therefore, during inference,
the metadata type audio source can be inferred by understanding
the unique nature of sounds from each platform of audio data used
to curate the dataset, as described in Section A of this supplemental
material.

D SOUNDSCAPE MAPS
In Figure 8, we present examples of country-scale soundscape
maps over the USA. These maps were generated using our best-
performing model trained on Sentinel-2 imagery without any meta-
data. In this demonstration, we utilize Sentinel-2 imagery covering
the USA at zoom-level 1. In the figure, for the text query “Sound of
animals on a farm”, high activation is observed primarily in non-
urban areas across the USA. Conversely, for the text query “Sound
of machines in a factory”, higher activation is concentrated in urban
areas near cities, with minimal activation in forested and range-
land regions. The use of PSM trained on freely available Sentinel-2
imagery enables the creation of global-scale soundscape maps.

In Figure 9, we showcase multi-scale soundscape mapping across
various geographic regions in the USA. Our objective is to investi-
gate how embeddings and associated similarity scores change with
variations in imagery zoom level and imagery source. We gener-
ate soundscape maps using Sentinel-2 satellite image embeddings
computed from imagery at zoom levels 1 and 5. To illustrate, we
randomly select an audio sample from the cow class in the ESC-50
dataset [36] as an example audio query. For the text queries we
select “Sound of children playing in a park” and “Sound of machines
in a factory”. For each queries, we analyze the corresponding sound-
scape maps generated at different zoom levels. In Figure 9, each
soundscape map is accompanied by a land cover map [17] of the
respective region for reference.

As observed in Figure 9, geographic regions expected to be re-
lated to the query demonstrate high similarity scores. For example,
for the audio query described by the audio class cow, we can see
that urban regions around cities like Memphis and Toledo have low
similarity scores, while rural areas (with greater potential to con-
tain farm animals) exhibit high similarity scores. Similarly, for the
text query related to the sound of children playing in a park, as
expected, we observe high similarity scores around cities where
one would expect to find city parks.

We also observe that for the same query and geographic region,
the distribution of similarity scores varies between the two zoom
levels. In Figure 9, at zoom level 1, the generated maps appear to
be more spatially fine-grained compared to maps generated using
satellite imagery at zoom level 5, which appear coarser. Although
the number of geolocations and their corresponding satellite im-
agery is the same for maps at both zoom levels, the coverage area
for an image at a higher zoom level is larger. This results in a slower
change of high-level visual appearance between the points in the
region, leading to closer similarity scores between local points and
ultimately producing soundscape maps with lower resolution. This
phenomenon highlights the inherent trade-off in spatial resolu-
tion when using different zoom levels for soundscape mapping.
This suggests that if we prioritize soundscape maps that retain the
semantics of audio concepts at the expense of fine-grained local-
ization capability, we can use satellite imagery at a higher zoom
level, which requires fewer images to cover a region of interest.
Conversely, for tasks requiring spatially fine-grained soundscape
maps, satellite imagery at a lower zoom level may be preferred.
This trade-off is fundamental to the multi-scale mapping capability
of our framework, Probabilistic Soundscape Mapping (PSM).
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Figure 8: Two soundscape maps of the continental United States, generated from Sentinel-2 image embeddings, accompanied by
a land cover map for reference [17].
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Figure 9: Soundscape maps over smaller geographic areas, computed using similarity scores between respective queries and
embeddings from Sentinel-2 satellite imagery at two zoom levels.
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