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Abstract— Deep neural networks (DNNs) are the primary
driving force for the current development of medical imaging
analysis tools and often provide exciting performance on various
tasks. However, such results are usually reported on the overall
performance of DNNs, such as the Peak signal-to-noise ratio
(PSNR) or mean square error (MSE) for imaging generation
tasks. As a black-box, DNNs usually produce a relatively stable
performance on the same task across multiple training trials,
while the learned feature spaces could be significantly different.
We believe additional insightful analysis, such as uncertainty
analysis of the learned feature space, is equally important, if not
more. Through this work, we evaluate the learned feature space
of multiple U-Net architectures for image generation tasks using
computational analysis and clustering analysis methods. We
demonstrate that the learned feature spaces are easily separable
between different training trials of the same architecture with
the same hyperparameter setting, indicating the models using
different criteria for the same tasks. This phenomenon naturally
raises the question of which criteria are correct to use. Thus, our
work suggests that assessments other than overall performance
are needed before applying a DNN model to real-world practice.

Index Terms — Neural Network, U-Net, Uncertainty

I. INTRODUCTION

Deep neural networks (DNNs) have shown promising per-
formance on medical imaging-related tasks [1]–[6]. However,
the evaluation of DNNs are often completed by reporting the
overall performance, while insightful analysis is generally
omitted. We believe analysis beyond the overall performance
is needed and equally important, if not more, especially when
applying neural networks to real-world tasks [7]–[9].

In recent years, DNN-based approach for medical image
generation has been a rapidly developed field. The tech-
niques are widely used for various tasks, such as image
segmentation [10]–[12], image denoising [13], and image
standardization [14]. As a data-driven approach, the features
of DNNs are directly learned from the training set. The
learning process is often guided by loss functions, such as
mean square error (MSE) loss, for measuring the overall
performance. This learning schema is constrained in finding
the optimal overall solution for the given task. The feature
space learning becomes a by-product of DNN training. Less
constrains is applied to finding the optimal features.

Fig. 1: Clustering heatmap shows the learned features of two
training trials of the same U-Net are highly separable. The
same samples are used to train and test the two training trials.

Figure 1 shows the clustering heatmap of features ex-
tracted by two U-Net [10] models. The two models are
trained using the same architecture, same hyperparameters,
and training data. Then, the same test samples are fed into
the models for the feature extraction. Pair-wise correlation
is applied to all the features extracted by the two mod-
els. Finally, unsupervised hierarchical clustering is applied
to generate the figure. Each row (or column) shows the
correlation of a given sample to all other samples. Rows
and columns are the same. Color bars on the left and top
indicate the specific model where the feature is extracted
from (see Section III-B.2 for more details about the method).
Ideally, numerous small clusters with two samples should be
observed. Since same samples are fed into the two models,



the two features of a same sample should be naturally close
to each other if the learned feature spaces of the models are
similar. However, two large clusters are observed. Each of
them contains samples from the one training trial, indicating
the features are highly coupled with training trials. Such a
phenomenon implies the output decisions of different models
are based on different features, which is not rare to see in the
deep learning world. However, it may not be acceptable in
the medical domain since domain experts might be expected
to make decisions based on the same standards, in general.

To better understand the inconsistency between the learned
feature spaces, we train and evaluate twelve U-Net mod-
els, with three architectures and two training strategies,
for abdominal CT images denoising. Our result suggests
that though generative models, such as U-Net, may have a
relatively stable overall performance across different training
trails, the features used for decision making (i.e., image
generation) are not consistent between training trials. This
unaccepted behavior could lead to potential issues of medical
applications. More assessments other than overall perfor-
mance are needed before applying a DNN model to real-
world practice. Guidelines and regulations are also needed to
catch up with the AI advancement to ensure that models with
claimed high overall performance undergo further assessment
and validation before being applied to real-world practice.

II. BACKGROUND

A. Neural Network Feature Space Learning

A typical neural network used in the imaging domain
may be considered as the combination of numerous linear
regression models and non-linear activation functions. The
network is often denoted as hΘ(), where Θ is a list of
tunable parameters or weights, Θ = {θ1, θ2, ..., θn}. Ideally,
the feature space of a given task is embedded in Θ after the
parameters are optimized. Loss functions, such as the MSE
loss, are applied to guide neural network learnings by pro-
viding feedback during the training. The parameters, Θ, are
optimized by minimizing the loss function. When a network
is trained like this, the learning process is constrained in the
overall performance and less constrained in the feature space.

B. Neural Network Weights Initialization

The goal of neural network training is to find the optimum
weights for the model that output the desired result on a given
task. The weights are iteratively updated during the training
from an initial set. Undesired initial weights may lead to
vanishing or exploding gradients issues [15], [16]. The most
widely used method is to initialize the weights randomly,
close to zero, and under the normal distribution.

The random weights are generated by a random number
generator (RNG). Most RNGs used for programming are
pseudorandom number generators (PRNGs) since generating
truly random numbers is often non-trivial. PRNGs generate
pseudorandom numbers using a pre-defined algorithm. A
seed (a number or a vector) is needed to initialize a PRNG.
With the same seed, the same sequence of pseudorandom
numbers can be generated by the PRNG. Thus, when setting

seed to a fixed number, the weights of a neural network are
always initialized the same across multiple initializations.

III. FEATURE SPACE EVALUATION METHOD

To understand the uncertainty of the learned feature
space of image generating models, we selected three U-Net
architectures—namely U-Net-5 with two encoding layers and
two decoding layers, U-Net-7 with three encoding layers and
three decoding layers, and U-Net-9 with four encoding layers
and four decoding layers.

In addition to the network architecture, we also consider
the effects of DNN weights initialization methods. Two
seeding methods are used to initialize the models, random
seeding and fixed seeding. Thus, six unique combinations
(denoted as six unique models in the future) of architecture
and seeding methods are considered in this work. Then, we
train each model twice. The learned feature spaces between
the two training trials of the same model are compared.

A. Feature Space Representation

We represent the learned feature space using the feature
mapss (i.e., activations) extracted from the test images. We
give the same test images to all the models and training trails.
Then, we extract the activations of all the images from all
the layers. For each model, two sets of N ×M ×K feature
maps are generated after this step, where N is the number
of test images, M ∈ [64, 512] is the number of feature
maps generated by a particular layer, and K ∈ [4, 8] is the
number of layers of a specific model. The two sets of feature
maps, finally, are compared using two computational-based
methods and a clustering-based method.

B. Similarity Comparison

We evaluate the feature spaces consistency of a unique
model by comparing the similarity of two learned feature
spaces between the training trials using computational-based
and clustering-based methods.

1) Computational-Based Methods: We use the cosine
similarity (CS) and the Singular Vector Canonical Correla-
tion Analysis (CCA) [17] as the computational evaluation
metrics. Cosine similarity is widely used to measure the
similarity between two non-zero vectors of an inner product
space. The value is bounded in [0, 1]. Normally, the value
1 is considered as “identical”, and 0 is considered as “not
similar at all”. We apply CS on the corresponding features
of a test sample and report the mean CS across all the test
samples.

Singular Vector Canonical Correlation Analysis is a tool
for quickly comparing two representations in a way that is
both invariant to affine transform. The original paper applies
CCA to measure the similarity between layers of neural
network models [17]. We use CCA to compare the learned
feature spaces of two training trials that represented the
features of each layer. We store the features of one layer
of one training trial in a N × M matrix, where N is the
number of samples and M is the number of features. Then,
a single CCA value is calculated between two metrics that



is bounded in [0, 1], with a higher value indicating a higher
degree of similarity.

2) Clustering-Based Method: In addition to the computa-
tional results, we also want to see whether the learned feature
spaces of two training trails are separable. We apply hierar-
chical clustering on a set of features of two corresponding
training trials. One particular pattern we are interested in is
whether the clusters are coupled with the training trials.

Given N test samples, we extract the M features of one
layer from each of the two training trials, 2N ×M features
are generated after this step. Then, we compute the pair-wise
correlation of the 2N × M features and apply hierarchical
clustering. If the learned feature spaces are quite different,
we may see multiple clusters containing a large amount of
samples from one training trail. Otherwise, no such patterns
should be observed. Instead, we may see up to N small
clusters, each only containing two samples. Since we test
each sample twice, if the learned feature spaces are similar
between the two training trials, the features of the same
sample generated by two training trials should be closer to
each other and be clustered together.

We present the result using a clustering heatmap. Each
row or column is a data sample. The rows and columns are
the same. The diagonal line should always have the highest
correlation (i.e., 1) since it indicates the result compared
with the sample itself. The color of the heatmap represents
the pairwise correlation of each testing sample. The absolute
value of the correlation is not critical for this analysis. We
are more interested in the relative patterns (i.e., where the
samples are coming from for each cluster). The color bar on
the left and top indicate the training trail where the sample
is coming from.

Figure 1 shows an example of the clustering heatmap
that the learned feature spaces of the two training trials
are highly separable. Two larger clusters are observed, with
one containing features mainly generated by Training Trail 2
(samples are color-coded as blue), and the other containing
features mainly generated by Training Trail 1 (samples are
color-coded as orange).

IV. EXPERIMENTAL RESULT

A. Dataset

The abdominal CT image set of the 2016 Low Dose CT
Grand Challenge [18] is used in this study. The image set
contains both low dose and full-dose CT images for 50
patients. In total, 14760 abdominal CT slides were used in
this study. We split the set to training/validation/test set on
the patient level, with 9130 images in the training set, 3026
images in the validation set, and 2604 images in the test set.
See Figure 2 for an example of the dataset.

B. Model Training

To evaluate the inconsistency of the learned feature space
of image generating models, we trained six unique U-Net
models with the combination of three architectures and two
seeding methods, random seeding and fixed seeding.

Fig. 2: Example of full dose (left) and low dose (right) CT
images. The low dose CT image is nosier than the other one.

(a)

(b)

(c)

Fig. 3: U-Net architectures used in this study. (a) 5-layer
architecture. (b) 7-layer architecture. (c) 9-layer architecture.

Figure 3 illustrates the three architectures. The contract-
ing path consists of multiple implementations of double-
convolution blocks (i.e., blocks with two convolution layers)
with a kernel size of 3 × 3, each followed by a Batch
Normalization and a Rectified Linear Unit, and then a 2× 2
max pooling operation. The expansive path has a similar
structure, except it applies 2× 2 up-convolutions instead of
the 2×2 max pooling operations at the down-sampling steps.

Each model was trained twice for 200 epochs with a batch



TABLE I: Mean Performance (PSNR) and Difference of the
Two Trails of Each Model

Models Mean PSNR (Difference)
Random Seeding Fixed Seeding

U-Net-5 38.68 (1.85) 35.96 (5.59)
U-Net-7 40.33 (0.97) 40.14 (5.12)
U-Net-9 41.26 (1.16) 40.65 (0.50)

TABLE II: Feature Space CCA Analysis Difference Between
Two Trials of Each Training Method

Layer CCA (Larger is Better)
U5-R U5-NR U7-R U7-NR U9-R U9-NR

Down1 0.0706 0.0943 0.0766 0.0894 0.0976 0.0798
Down2 0.0456 0.0635 0.1299 0.0583 0.0974 0.0755
Down3 – – 0.1841 0.0538 0.1584 0.0697
Down4 – – – – 0.1208 0.1052
Bottleneck

Up1 0.1191 0.0599 0.1515 0.0534 0.1235 0.0754
Up2 0.1239 0.1727 0.1160 0.0446 0.0647 0.0681
Up3 – – 0.1280 0.1138 0.1105 0.0571
Up4 – – – – 0.1227 0.1103

Average 0.0898 0.0974 0.1310 0.0599 0.1794 0.0801
Ux: U-Net with x layers, -R: Random Seeding, -NR: Fixed Seeding

TABLE III: Feature Space Cosine Similarity Difference
Between Two Trials of Each Training Method

Layer Cosine Similarity (Larger is Better)
U5-R U5-NR U7-R U7-NR U9-R U9-NR

Down1 0.6371 0.5726 0.5708 0.5670 0.5511 0.5506
Down2 0.6876 0.6141 0.5950 0.7157 0.6031 0.6510
Down3 – – 0.5882 0.7257 0.6016 0.7220
Down4 – – – – 0.6258 0.7039
Bottleneck

Up1 0.6443 0.7120 0.6900 0.7076 0.5939 0.7519
Up2 0.6335 0.5392 0.7138 0.7571 0.7014 0.7058
Up3 – – 0.6614 0.6364 0.7133 0.7562
Up4 – – – – 0.6665 0.6375

Average 0.6479 0.6095 0.6366 0.6846 0.6332 0.6849
Ux: U-Net with x layers, -R: Random Seeding, -NR: Fixed Seeding

size of 8 and an RMSprop optimizer [19] initialized with a
learning rate of 0.01. The combination of L1 (MAE) and L2
(MSE) were used as the loss function.

C. Result

Table I shows the denoising result of the six models. Each
model is trained twice. The mean performances of each two
training trials and the differences between the two training
trials are reported. We use the PSNR to evaluate the quality
of the generated images. Typical values for the PSNR in
an 8-bit image are between 30 and 50 dB, where higher is
better. The table shows that when increasing the number of
layers of a U-Net model, the overall performance may be in-
creased. The U-Net-9 model with random seeding generates
the highest performance. The same architecture with fixed
seeding achieved the second-best result. In general, random
seeding models may have slightly higher performance than
fixed seeding models. In addition, the performance of random
seeding models may be more stable than the fixed seeding
models across multiple training.

Tables II and III show the feature space analysis result

using CCA and cosine similarity (CS), respectively. The
tables reveal that both the CCA and CS are relatively low
for all the models. This result may imply that none of the
models is likely to have a consistent learned feature space
across multiple training trials. However, we observed one
interesting pattern that is the decoder part (i.e., the up layers)
often has higher values than the encoder part (i.e., the down
layers). Such an observation indicates the feature spaces of
the decoder part may be more consistent than the encoder
part of a given U-Net model.

Figure 4 shows the clustering heatmap of U-Net-9 model
with fixed seeding. The figure reveals that the learned feature
spaces of the models across all the layers are highly spread-
able by unsupervised clustering algorithms. Large clusters
containing samples from only one training trail are observed
in all figures. Similar results are observed for all other
models. The clustering-based evaluation also indicates that
none of the models is likely to have a consistent learned
feature space across multiple training trials.

V. DISCUSSION

As a data-driven approach, a neural network learns fea-
tures directly from the training set. Due to the exciting overall
performance of neural networks, such features are often
thought of as more robust or directly related to the predictive
task than conventional hand-crafted features. Researchers
are also seeking to find hidden patterns from the deep
learning features that can be used to understand a given
task [20]–[22]. However, the learning of a neural network
model is often guided by loss functions measuring the overall
performance. This learning schema is less constrained in the
feature space learning than the overall performance that may
provide an open ending.

This work evaluates the feature space consistency of six
unique U-Net models. According to the computational-based
and clustering-based evaluation results, none of the models
are likely to have a consistent learned feature space across
multiple training trials. Surprisingly, fixed seeding does not
lead to a stable feature space either. This is contradicted to
our intuition. Since all the training trials are initialized with
the same set of weights for fixed seeding, we would think it
might lead to a more stable feature space learning. However,
no such behavior is observed in our study.

In addition, our result shows that the degree of feature
space inconsistency might not be coupled with performance
differences. For instance, we would naturally assume that
the larger inconsistency between the learned feature spaces
may lead to larger performance differences. However, our
result shows that this assumption is not true. For instance,
the U-Net-9 models with random seeding have a mean PSNR
of 41.26 and the PSNR difference between the two training
trials is 1.16. The U-Net-9 with fixed seeding has a mean
PSNR of 40.65 with a difference of 0.50 difference between
the two training trials. However, the CCA analysis shows the
feature space of the latter one is less stable.

The results carried out through this study suggest only
evaluating the overall performance, such as MSE or PSNR,
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Fig. 4: Clustering heatmap the feature space similarity of
each layer in the U-Net-9 model with fixed seeding. (a)-(d):
Down1 to Down4 layers. (e)-(h): Up1 to Up4 layers.

is not sufficient enough to provide a complete understanding
of a neural network model. Novel training schema may be
needed to provide a more stable feature space across multiple
training trials.
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